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Abstract 
In this paper, we present the results of initial 
explorations into the application of relational model 
discovery methods to building comprehensive 
ecosystem models from data. Working with 
collaborators at the USGS Biological Resources 
Discipline and at the Environmental Protection 
Agency, we are engaged in two projects that apply 
relational probabilistic model discovery to building 
“community-level” models of ecosystems.  A 
community-level ecosystem model is an integrated 
model of the ecosystem as a whole. The goal of our 
modeling effort is to aid domain scientists in gaining 
insight into data. Our preliminary work leads us to 
believe the method has tremendous promise. At the 
same time, we have encountered some limitations in 
existing methods. We briefly describe two projects and 
make some observations, particularly with respect to 
the development of synthetic, or derived, variables. We 
describe specific extensions we made to solve 
problems we encountered, and suggest elements of an 
extended grammar for such variables. 

1. Introduction  
Ecosystems are composed of interacting populations of 
organisms and their environments.  They are notoriously 
difficult to study because of their size and complexity.  In 
addition, many are unique.  Controlled experimentation in 
these ecosystems is undesirable because of the potentially 
irreversible damage it may cause.  However, 
observational data are often abundant.  The challenge in 
studying ecosystems is to synthesize these data into 
coherent, comprehensive, biologically meaningful 
models.   

While data collection traditions and techniques are 
mature, data analysis methodologies are less well 
developed. Generally, individual, domain-specific teams 
(e.g., a team of physicists or a team of biologists) apply 
traditional statistical methods to investigate pair-wise 
correlations among variables in their separate datasets, 
but have no methods for investigating the complex, noisy, 
cross-disciplinary interactions that are crucial to 
understanding the ecosystem as a whole. As a result, the 
standard ecosystem-level computational scientific method 
is a form of “generate and test”: the manual construction 
of mechanistic models and model selection by comparing 

simulation results to data or expert knowledge.  
Probabilistic models of ecosystems are slowly becoming 
more common, however these have been constructed using 
knowledge-engineering (Kuikka et al., 1999, Marcot et al., 
2001).  

Most of the data collected in studies of ecological 
systems is stored in relational databases. An emerging 
family of methods for relational learning [Muggleton and 
De Raedt, 1994], [Van Laer and De Raedt, 2001], 
[Quinlan, 1996], [Getoor et al., 1999] provide the 
opportunity to learn comprehensive models directly from 
these relational data sources. 

In this paper, we present the results of initial 
explorations into the application of model discovery 
methods to build comprehensive ecosystem models from 
data. Working with collaborators in the USGS Biological 
Resources Discipline and the Environmental Protection 
Agency, we are engaged in two projects that apply 
probabilistic relational model discovery to build 
“community-level” models of ecosystems.  (A community-
level ecosystem model is an integrated model of the 
ecosystem as a whole.) The goal of our modeling effort is 
to aid domain scientists in gaining insight into data and to 
construct complex prior hypotheses about the ecosystems 
studied. Our preliminary work leads us to believe the 
method has tremendous promise. At the same time, we 
have encountered some limitations in existing methods. 
We briefly describe two projects and make some 
observations, particularly with respect to the development 
of “synthetic”, or derived, variables.  

Probabilistic relational model discovery methods 
exploit a relational data model to derive parameters that 
account for variation in the explicit variables in a data 
model. In a Hollywood database, for example, an actor’s 
income may be related to the number of movies in which 
s/he played a role. [Getoor et al., 1999] introduce the 
concepts of a path (a chain of references – e.g. “actor.role” 
above), and a terminal aggregator (e.g., “number” or count 
above) as defining a space of synthetic variables. We have 
found this framework useful, but limited in its ability to 
account for all known interactions in our data. We will 
describe examples motivating the introduction of two 
additional features, selectors and variables, into a synthetic 
variable grammar.  



2. Applications 
CleverSet is currently engaged in two ecological 
modeling projects:  community-level modeling of the 
Crater Lake ecosystem (USGS) (Jorgensen et al., 2003) 
and community-level modeling of West Nile virus disease 
transmission (Orme-Zavaleta et al., 2003). 

Crater Lake 

Data 
The National Park Service is concerned about long-term 
changes in the clarity of Crater Lake, a national park and 
the clearest deep-water lake in the world.  Although many 
domain-specific surveys have been undertaken, the 
analytical framework necessary to link these analyses into 
one overall assessment of lake health has been lacking.  
Our goal in this project has been to formulate multiple, 
complex, simultaneous hypotheses given all the data 
obtained from the long-term studies of the lake (Larson et 
al., 1993).  These data have been collected using varying 
time and spatial scales.  For example, surface weather 
condition information is available on a daily basis, but 
phytoplankton densities are measured only once or twice 
a month (and not at all in winter), while rocket-borne 
instrumentation to gather weather data at altitude is only 
rarely available. 

Method 
In an initial Crater Lake analysis performed for USGS, 
we chose a set of temporal units to frame the analysis.  
These units were time periods corresponding to observed 
patterns of clarity of the lake and for which data were 

available: June-July, August, September-October.  We then 
added a table containing these time units (this unary 
relation establishes the basic time scale), and relating 
hydrological seasons annually (this binary relation 
establishes the basic unit of time-lag to be considered in 
the analysis), and related the data tables we wished to 
include in the analysis to this temporal table.  A complete 
schema for the analysis is shown in Figure 1. 

Results 
Figure 2 shows the essential elements of the discovered 
model (we omit some schema elements for clarity). One 
relationship we discovered is that the dominant fish species 
in gill net catches was probabilistically dependent upon 
Secchi descending depth (water clarity) in the current year, 
mean fish weight in the current year, descending Secchi 
depth the previous year and dominant fish species two 
years previous.  This and findings concerning age class 
structure agreed with the anecdotal evidence that schools 
of Kokanee smolts swimming at the edges of the lake were 
preyed upon by mature Rainbow trout, where they were 
caught in gill nets.  This phenomenon does not occur every 
year.  A time lag of two years, discovered by the model, is 
consistent with experts’ observations.  The relation 
between this interaction and water quality was previously 
unknown. Other somewhat surprising discoveries include: 
(1) the centrality of water clarity (measured by the Secchi 
“DesDepth” parameter); and (2) the lack of a direct 
relationship between Zooplankton count and water clarity, 
at least at the spatio-temporal scale studied.  These finding 
suggest that fish attributes may serve as a predictor of 
water clarity. 
 

 
secchi.mdb
Readings: Table
Secchi ID
DesDepth
(n=864)

secchi.mdb
SampleDates: Table
Secchi ID
Date
seasonCode
readings
(n=192)

phytoplankton.mdb
Counts Jan 1988 & 1989 to
Present: Table
Counts 1985 to 1988 except
Jan 1988: Table
Counts 1981 to 1984:Table
Block
Density
Code
(n=17,839)

phytoplankton.mdb
Dates and Depths: Table
Block
Date
Depth
counts
seasonCode
(n=1198)

phytoplankton .mdb
PhyCode:Table
Code
Division
(n=8)

Seasons (added table)
PreYr
Date
YrSegment
secchiSampleDates
phytoDates
ZooDates
FishDates
(n=120)

zooplankton.mdb
ZooCounts: Table
Sample
Count
Code
(n=3204)

zooplankton.mdb
ZooSamples: Table
DateTimeID
Sample
Depth
CountTable

zooplankton.mdb
ZooDateTime: Table
DateTimeID
Date
seasonCode
SampleTable

zooplankton.mdb
ZooSpeciesNames: Table
Code
(n=22)

fish.mdb
FishSpecimen: Table
Catchid
Species
TotalLength
Weight
Sex
Maturity
Age

fish.mdb
CatchInfo: Table
CatchID
Date
CaptureMethod
seasonCode
FishTable

 
 

Figure 1. Crater Lake Schema 



 

 
Figure 2. Crater Lake PRM 

Discussion 
The Crater Lake project highlighted the centrality of time 
in such analyses. Time creates several challenges for 
relational model discovery:  

1. Time is rarely reified in relational schema. This 
presents a problem in constructing paths like 
“secchi.DesDepth.yrSegment.Phyto.density.” 
Our solution in this case was to manually add a 
“Season” table. We have since implemented 
facilities for partially automating this process, by 
recognizing and re-ifying data/time information 
in schema’s. 

2. Once time was reified, two further decisions 
were necessary: we established an aggregation 
unit for time and we separately established a lag 
duration. Expert knowledge was used to 
establish both, based on domain knowledge and 
understanding of the goals of the modeling. In 
future we hope to explore extensions of existing 
statistical time series analysis methods to aid in 
this process.  

A second problem that arose in this analysis was the 
frequent desire to form synthetic variables outside the 
scope of the current path language. For example, there 
were times when prior knowledge suggested that the 
density of a particular phytoplankton species might be a 
relevant parameter. Our current synthetic variable 
grammar does not allow for selection of a subset of the 
items retrieved by a path. 

 

Finally, the goal of this project was to gain scientific 
insight into data that had been collected over 25 or more 
years (Secchi depth readings go back to the 1880s!). We 
found that learning models over not just the variables in 
the provided tables, but over their parents as well, 
provided additional insight. An example fragment from 
such an extended model, for the FishSpecimen table and 
its immediate parents, is shown in Figure 3. This 
extended model shows interactions not obvious in Figure 
2, such as the multiple pathways through which Mean 
Secchi depth (two years previous) interacts with current 
Mean fish age. 

West Nile Virus 

Data 
While the Crater Lake project involves building a 
relational model over multiple databases of similar type, 
our work with the EPA on modeling the spread of West 
Nile Virus involves combining multiple databases of 
differing types. One class of database contains incident 
reports (e.g., reports of dead birds testing positive for 
WNV, report of pools of water in which breeding 
mosquito populations test positive for WNV, human case 
reports, etc.). Each database contains reports of one type 
of event, located in place and time. A second class of 
database contains records of static features, such as the 
presence of a tire disposal facility (potential mosquito 
breeding site) or landscape type at a location. The 
challenge was to integrate these multiple databases into 
an overall model of West Nile Virus spread. 
 

CurrYr
PrevYr 

PrevYr

PrevPrevYr CurrYr

PrevPrevYr 



 
Figure 3. FishSpecimen Unrolled Model 

 

Method 
The first step in our integration of these data sources was 
the construction of an integrated data schema across these 
data sources through the addition of intensional relations 
linking the information in space and time. Knowing that 
each database recorded location in columns labeled 
latitude and longitude, and time as day/month/year, 
enabled us to construct a common spatio-temporal frame 
of reference.  The simple recognition of point location in 
space and time, however, is not enough to integrate these 
data sources. Rarely do two events occur at precisely the 
same place or time. Rather, we imposed a scale across 
both the spatial and temporal dimensions. The parameters 
of this scale (five miles for space, and one month for 
time) were drawn from scientific knowledge about the 
life cycle of the vector of interest, the mosquito, and the 
typical flight distance for the competent bird host.  Again, 
this was done by hand in our preliminary studies to date.  

Results 
Figure 4 shows a preliminary model of the spread of 
West Nile Virus in Maryland in 2001. Shown is a model 
over the synthetic variables constructed starting from the 
table of positive bird records. 

 
 
The results support previous hypotheses that tire 

disposal site license density is correlated with incidence 
of West Nile Virus in birds. Tire disposal facilities may 
affect disease spread directly, by serving as breeding 
areas for mosquitoes, or may be a proxy for population 
density, which may in turn affect sampling and/or disease 
prevalence (e.g., though human movement through the 
region).  The results also suggest that disease prevalence 
in mosquito pools may be a predictor of disease 
appearance in birds. The number of human and horse 
cases in 2001 was too small to support any significant 
findings related to these cases.  However, even with these 
sparse data, the model produced is consistent with current 
knowledge regarding the manner in which the disease is 
transmitted and forms a framework in which future 
findings may be evaluated. The fact that horse cases do 
not contribute significant information to the model 
provides preliminary evidence that monitoring this 
incompetent host may be unnecessary in tracking the 
spread of this disease.  
 
 



 
 
 

Figure 4. West Nile Virus Model Fragment 
 
 Since the mechanistic model of disease spread is not 
completely known, the temporal and spatial models 
included in the model may not be the only, or even the 
most useful scales at which to view interactions.  Finer 
spatial resolutions, for example, might provide evidence 
about the species of birds and mosquitoes involved in 
transmission.  Landscape level data, for example, 
landcover type, might also improve the descriptive and 
predictive capabilities of the model.   As mentioned in 
our discussion of the Crater Lake study, our current 
manual methods do not permit easy exploration of 
possible scales. 

Discussion 
Our work on West Nile Virus propagation reinforces the 
need for selectors in synthetic variables. Unlike Crater 
Lake, however, where the selectors where over the values 
of primitive attributes, in the analysis of West Nile Virus, 
we needed to form equality selectors over entities (e.g., 
positive mosquitoes in adjacent geocells in the same 
month). We extended our synthetic variable grammar to 
include a single selector phrase. A selector is a Boolean 
operator mapped over the elements of the base path 
defining a synthetic variable. Elements for which the 
selector returns true and included in the result, and 
elements for which it returns false are omitted.  The 
selector consists of a Boolean operator and two paths. 
The first path is applied to the table entry at the head of 
the base path for the synthetic variable, and the second 

path is applied to each table entry retrieved by the base 
path. For example, consider: 

 
PosBirds.GeoCell.PosMosq ==(PosBird.month, 

PosMosq.month).Count() 
 

The base path (“PosBirds.GeoCell.PosMosq”) yields a set 
of positive mosquito entries in the same spatial region as 
a bird entry. The selector (“==(PosBird.month, 
PosMosq.month)”) then filters out all entries not in the 
same month as the positive bird record. Finally, the 
“Count()” aggregator returns a scalar, the cardinality of 
the resulting set1. 

3. Conclusions and Future Work 
Relational probabilistic modeling provides a natural 
framework for investigating ecological data. The large 
amount of observational, noisy data, often collected by 
multiple investigators over varying time-scales, provides 
a rich field for probabilistic model discovery, and 
relational approaches raise the level of modeling to one 
with which domain scientists can readily interact.  

Existing synthetic variable construction methods 
naturally generate many variables either previously 
                                                           
1 In more recent work, supported by NSF SBIR DMI-
0231961, we have developed a more comprehensive 
synthetic variable language grammar and automated 
generation capability, patent-pending. 



known to scientists or immediately recognized by them as 
scientifically relevant. At the same time, attempts to apply 
relational probabilistic model discovery techniques to 
ecological data have revealed limitations in our current 
synthetic variable construction methods. We are currently 
exploring work in data base path expressions, for 
example that of Van den Bussche [Van den Bussche et 
al., 93] and Frohn [Frohn et al., 94], as generalizations 
capable of expressing a more comprehensive set of 
synthetic variables. Key concepts include the selector and 
the introduction of variables (to allow subsequent 
reference to earlier elements in a path). We are also 
exploring mixed-initiative search procedures over these 
much larger path grammars.  
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