32 Appendix D. General design considerations for weather/climate-monitoring programs

D.2.2. Spatial Behavior

A number of techniques exist to interpolate from isolated point values to a spatial domain. For example, a common technique is simple inverse distance weighting. Critical to the success of the simplest of such techniques is that some other property of the spatial domain, one that is influential for the mapped element, does not vary significantly. Topography greatly influences precipitation, temperature, wind, humidity, and most other meteorological elements. Thus, this criterion clearly is not met in any region having extreme topographic diversity. In such circumstances, simple Cartesian distance may have little to do with how rapidly correlation deteriorates from one site to the next, and in fact, the correlations can decrease readily from a mountain to a valley and then increase again on the next mountain. Such structure in the fields of spatial correlation is not seen in the relatively (statistically) well-behaved flat areas like those in the eastern U.S.

To account for dominating effects such as topography and inland–coastal differences that exist in certain regions, some kind of additional knowledge must be brought to bear to produce meaningful, physically plausible, and observationally based interpolations. Historically, this has proven to be an extremely difficult problem, especially to perform objective and repeatable analyses. An analysis performed for southwest Alaska (Redmond et al. 2005) concluded that the PRISM (Parameter Regression on Independent Slopes Model) maps (Daly et al. 1994; 2002; Gibson et al. 2002; Doggett et al. 2004) were probably the best available. An analysis by Simpson et al. (2005) further discussed many issues in the mapping of Alaska’s climate and resulted in the same conclusion about PRISM.

D.2.3. Climate-Change Detection

Although general purpose climate stations should be situated to address all aspects of climate variability, it is desirable that they also be in locations that are more sensitive to climate change from natural or anthropogenic influences should it begin to occur. The question here is how well we know such sensitivities. The climate-change issue is quite complex because it encompasses more than just greenhouse gasses.

Sites that are in locations or climates particularly vulnerable to climate change should be favored. How this vulnerability is determined is a considerably challenging research issue. Candidate locations or situations are those that lie on the border between two major biomes or just inside the edge of one or the other. In these cases, a slight movement of the boundary in anticipated direction (toward “warmer,” for example) would be much easier to detect as the boundary moves past the site and a different set of biota begin to be established. Such a vegetative or ecologic response would be more visible and would take less time to establish as a real change than would a smaller change in the center of the distribution range of a marker or key species.