30 Appendix B. Climate-monitoring principles

Weather and Climate Inventory, Klamath Network, National Park Service, 2007

 Appendix B. Climate-monitoring principles

Since the late 1990s, frequent references have been made to a set of climate-monitoring principles enunciated in 1996 by Tom Karl, director of the NOAA NCDC in Asheville, North Carolina. These monitoring principles also have been referred to informally as the “Ten Commandments of Climate Monitoring.” Both versions are given here. In addition, these principles have been adopted by the Global Climate Observing System (GCOS 2004).

(Compiled by Kelly Redmond, Western Regional Climate Center, Desert Research Institute, August 2000.)

B.1. Full Version (Karl et al. 1996)

B.1.1. Effects on climate records of instrument changes, observing practices, observation locations, sampling rates, etc., must be known before such changes are implemented. This can be ascertained through a period where overlapping measurements from old and new observing systems are collected or sometimes by comparing the old and new observing systems with a reference standard. Site stability for in situ measurements, both in terms of physical location and changes in the nearby environment, also should be a key criterion in site selection. Thus, many synoptic network stations, which are primarily used in weather forecasting but also provide valuable climate data, and dedicated climate stations intended to be operational for extended periods must be subject to this policy.

B.1.2. Processing algorithms and changes in these algorithms must be well documented. Documentation should be carried with the data throughout the data-archiving process.

B.1.3. Knowledge of instrument, station, and/or platform history is essential for interpreting and using the data. Changes in instrument sampling time, local environmental conditions for in situ measurements, and other factors pertinent to interpreting the observations and measurements should be recorded as a mandatory part in the observing routine and be archived with the original data.

B.1.4. In situ and other observations with a long, uninterrupted record should be maintained. Every effort should be applied to protect the data sets that have provided long-term, homogeneous observations. “Long-term” for space-based measurements is measured in decades, but for more conventional measurements, “long-term” may be a century or more. Each element in the observational system should develop a list of prioritized sites or observations based on their contribution to long-term climate monitoring.

B.1.5. Calibration, validation, and maintenance facilities are critical requirements for long-term climatic data sets. Homogeneity in the climate record must be assessed routinely, and corrective action must become part of the archived record.

B.1.6. Where feasible, some level of “low-technology” backup to “high-technology” observing systems should be developed to safeguard against unexpected operational failures.

B.1.7. Regions having insufficient data, variables and regions sensitive to change, and key measurements lacking adequate spatial and temporal resolution should be given the highest priority in designing and implementing new climate-observing systems.

B.1.8. Network designers and instrument engineers must receive long-term climate requirements at the outset of the network design process. This is particularly important because most observing systems have been designed for purposes other than long-term climate monitoring. Instruments must possess adequate accuracy with biases small enough to document climate variations and changes.

B.1.9. Much of the development of new observational capabilities and the evidence supporting the value of these observations stem from research-oriented needs or programs. A lack of stable, long-term commitment to these observations and lack of a clear transition plan from research to operations are two frequent limitations in the development of adequate, long-term monitoring capabilities. Difficulties in securing a long-term commitment must be overcome in order to improve the climate-observing system in a timely manner with minimal interruptions.

B.1.10. Data management systems that facilitate access, use, and interpretation are essential. Freedom of access, low cost, mechanisms that facilitate use (directories, catalogs, browse capabilities, availability of metadata on station histories, algorithm accessibility and documentation, etc.) and quality control should guide data management. International cooperation is critical for successful management of data used to monitor long-term climate change and variability.

B.2. Abbreviated version, “Ten Commandments of Climate Monitoring”

B.2.1. Assess the impact of new climate-observing systems or changes to existing systems before they are implemented.

“Thou shalt properly manage network change.” (assess effects of proposed changes)

B.2.2. Require a suitable period where measurement from new and old climate-observing systems will overlap.

“Thou shalt conduct parallel testing.” (compare old and replacement systems)

B.2.3. Treat calibration, validation, algorithm-change, and data-homogeneity assessments with the same care as the data.

“Thou shalt collect metadata.” (fully document system and operating procedures)

B.2.4. Verify capability for routinely assessing the quality and homogeneity of the data including high-resolution data for extreme events.

“Thou shalt assure data quality and continuity.” (assess as part of routine operating procedures)

B.2.5. Integrate assessments like those conducted by the International Panel on Climate Change into global climate-observing priorities.

“Thou shalt anticipate the use of data.” (integrated environmental assessment; component in operational plan for system)

B.2.6. Maintain long-term weather and climate stations.

“Thou shalt worship historic significance.” (maintain homogeneous data sets from long–term, climate-observing systems)

B.2.7. Place high priority on increasing observations in regions lacking sufficient data and in regions sensitive to change and variability.

“Thou shalt acquire complementary data.” (new sites to fill observational gaps)

B.2.8. Provide network operators, designers, and instrument engineers with long-term requirements at the outset of the design and implementation phases for new systems.

“Thou shalt specify requirements for climate observation systems.” (application and usage of observational data)

B.2.9. Carefully consider the transition from research-observing system to long-term operation. “Thou shalt have continuity of purpose.” (stable long-term commitments)

B.2.10. Focus on data-management systems that facilitate access, use, and interpretation of weather data and metadata.

“Thou shalt provide access to data and metadata.” (readily available weather and climate information)

B.3. Literature Cited

Karl, T. R., V. E. Derr, D. R. Easterling, C. K. Folland, D. J. Hoffman, S. Levitus, N. Nicholls, D. E. Parker, and G. W. Withee. 1996. Critical Issues for Long-Term Climate Monitoring. Pages 55-92 in T. R. Karl, editor. Long Term Climate Monitoring by the Global Climate Observing System, Kluwer Publishing.

Global Climate Observing System. 2004. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC. GCOS-92, WMO/TD No. 1219, World Meteorological Organization, Geneva, Switzerland.

Other pages in this section